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Introduction and Background - Graph-Structured Data is Everywhere
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Introduction and Background - Graph-based Tasks and Graph Machine Learning

Node Classification/Regression

Graph Classification/Regression
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Influence 
Maximization

Garbage in, garbage out

Real-world 
graph data 
can have 
data quality 
challenges…

Graph 
ML Model

Node Embedding
Edge Embedding

Graph Embedding

…

Input Output
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Introduction and Background – Real-world Graphs have Data Quality Issues

Criminal Associate Network
Bias!

Group 1No-BailBail Group 2

Imbalance Issues
e.g., labeled data in chemistry

Imbalance Ratio

F1
-m

ic
ro

Drug Discovery
HTS: Hit Ratio
0.05% to 0.5%

Topological Issues
e.g., Homophily vs Heterophily

Birds of a feather flock together

Abnormal Graph DataBias Issues
e.g., bail decision making
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Introduction and Background – Model- vs. Data-Centric Methods

Model-Centric Data-Centric

Model 
architectures

Loss functions/
constraints

etc.…

Data Organization:
Constructing graphs

Data Integration:
Improving node/edge 

features

Data Cleaning:
Confident 

learning

…

etc.

Find the best model for 
the given fixed dataset

Realize the best dataset for 
the given prediction task

Hyperparameter 
tuning
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Introduction and Background – Model- vs. Data-Centric Methods

Credit: MIT Introduction to Data-Centric AI course & Inspired by XKCD 2494 “Flawed Data”
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Topology Issues

• Global Positional Issues

• Local Topology Issues

• Missing Graph Issues

• Future Directions and Q&A
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Darker colors - Higher influences. 

If 𝑑" > 𝑑#, 𝑣" has higher influence than 𝑣# on training GNNs

Degree -> Influence

Topology Issues – Global Topology Issues – Labeled Node Influence 

Tang, Xianfeng, et al. "Investigating and mitigating degree-related biases in graph convoltuional networks." CIKM 2020
Chen, Deli, et al. "Topology-imbalance learning for semi-supervised node classification." NeurIPS 2021

Position -> Influence

𝐱"$%& = 𝜎((
#∈𝒩(

𝑎"# 𝐖$ +𝐖)𝒋
$ 𝐱#$)

Degree-dependent!

𝐏 = 𝛼 𝐈 − 1 − 𝛼 𝐀* +&

𝐓, = 𝔼𝒙∼𝐏𝒗:( (
#∈ &,0 ,#12,

𝒞#
+&(

"∈𝒞-

𝐏",4)

𝐿 = − ℒ '!+
(∈ℒ

𝑤(+
+,!

-

𝑦(+ log p(+
High T
Hight Conflicts, 
low weight
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Homophily vs Heterophily

Birds of a feather 
flock together

Ego-Neighbor Separation
𝐫,0 = COMBINE(r,0+&, AGGR({𝐫50+&: 𝑢 ∈ 𝒩,}))

Higher-order Neighbor
𝐫,0 = COMBINE(r,0+&, AGGR&( 𝐫50+&: 𝑢 ∈ 𝒩,& ,

AGGR6({𝐫50+&: 𝑢 ∈ 𝒩,6}… ))

Combination of Intermediate Representation
𝐫,0 = COMBINE(r,&, r,6, … , r,7)

Topology Issue – Local Topology Issues – Heterophily/Homophily 

Ego

1-order

2-order

Graph-level Homophily

Zhu, Jiong, et al. "Beyond homophily in graph neural networks: Current limitations and effective designs.” NeurIPS 2020
Zhu, Jiong, et al. "Graph Neural Networks with Heterophily." AAAI 2021

𝐁- = 𝐁. + 𝐀𝐁-'!𝐇
Class belief propagation

𝐇 ∈ ℝ 𝒴 ×|𝒴|

𝐁 ∈ ℝ 𝒱 ×|𝒴|

Transition 
among Graph
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Homophily vs Heterophily

Birds of a feather 
flock together

Ego-Neighbor Separation
𝐫,0 = COMBINE(r,0+&, AGGR({𝐫50+&: 𝑢 ∈ 𝒩,}))

Higher-order Neighbor
𝐫,0 = COMBINE(r,0+&, AGGR&( 𝐫50+&: 𝑢 ∈ 𝒩,& ,

AGGR6({𝐫50+&: 𝑢 ∈ 𝒩,6}… ))

Combination of Intermediate Representation
𝐫,0 = COMBINE(r,&, r,6, … , r,7)

Topology Issue – Local Topology Issues – Heterophily/Homophily 

Ego

1-order

2-order

Graph-level Homophily

Zhu, Jiong, et al. "Beyond homophily in graph neural networks: Current limitations and effective designs.” NeurIPS 2020
Zhu, Jiong, et al. "Graph Neural Networks with Heterophily." AAAI 2021

𝐇 ∈ ℝ 𝒴 ×|𝒴|

𝐁 ∈ ℝ 𝒱 ×|𝒴|

Graph Transition

Class Transition
0.1 0.1 0.8
𝐀𝐁./!

0.1 0.3 0.6
0.8
0.7

0.1
0.3

0.1
0

𝐇

𝐁- = 𝐁. + 𝐀𝐁-'!𝐇
Class belief propagation
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Topology Issue – Local Topology Issues – Heterophily/Homophily 

PubMed

Within the Same Graph
Chameleon

In homophily graph, GNNs > MLP on homophily nodes
In heterophily graph, GNNs > MLP on heterophily nodes

Class Neighborhood Distribution Distinguishability 

High HighLow

Across Different Graphs

Ma, Yao, et al. "Is Homophily a Necessity for Graph Neural Networks?." ICLR 2021
Mao, Haitao, et al. "Demystifying Structural Disparity in Graph Neural Networks: Can One Size Fit All?." NeurIPS 2024
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Topology Issue – Local Topology Issues – Training-to-Testing Topology Shift

Focal Link is missing from training subgraph to testing subgraph

Distribution Shift

1 2 1 2

Negative Injection

Edge Mean

𝐡?@AB =
(𝐡% + 𝐡+)

2

Edge Attention

𝐡?@AB = 𝑤%𝐡% + 𝑤+𝐡+
𝑤% = 𝜎(𝐪Ctanh(𝐖𝐡% + 𝐛))

1 2 1 2

Local Subgraph LinkPredictor

Link Prediction

Zhang, Muhan et al. "Link prediction based on graph neural networks." NeurIPS, 2018
Dong, Kaiwen, et al. "Fakeedge: Alleviate dataset shift in link prediction." LOG, 2022
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1 2 1 2

Training Time Testing Time

Link-centric Perspective

Time-based Split
Testing edges have more testing edges around

Collab
𝐓𝐂012: Common interaction between training and validation
𝐓𝐂3456: Common interaction between training and validation

Topology Issue – Local Topology Issues – # of Common Neighbor Shift

t

Wang, Xiyuan et al. "Neural Common Neighbor with Completion for Link Prediction." ICLR, 2024
Wang, Yu, et al. ”A Topological Perspective on Demystifying GNN-based Link Prediction Performance" ICLR, 2024

Node-centric Perspective

Training

Bob

Validation

food preference gradually shifts

Testing

t
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Topology Issue – Missing Topology Issues

(c) Multiplex Graph

…

…

(b) Edges Co-viewCo-view-ATC

…

(a) User historical sequences

ViewATC

…

ATC

… …

View ViewATC

User/Item Interaction

Q

𝐒'

𝐒𝟐

A

𝐒' : The Simpson’s Theme was re-arranged
during season 2, and the current arrangement by Alf
Clausen was introduced at the beginning of season3

𝐒(: Alf Heiberg Clausen (born March 28, 1941) is
an American film and television composer.

Q: In what year was the creator of the current
arrangement of the Simpson's Theme born?

A: March 28, 1941

Multi-hop Reasoning

11

Page Node

Table Node

Structural Relation

Sentence Node

Common keyword or
Sentence Similarity

𝐱!

𝐱"

𝐱#

𝐱$

𝐱%

2

1

6 5

4

3

𝐱&

…

Document Graph Construction

Wang, Yu, et al. "Knowledge graph prompting for multi-document question answering." AAAI, 2024
Wang, Yu, et al. “Knowledge Graph-based Session Recommendation with Adaptive Propagation.” WWW, 2024

Sometimes Real-world 
Applications do not 

have Graphs!

But Graph can actually 
encode some useful 

information
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Topology Issue – Missing Topology Issues

Chen, Yu, et al. "Iterative deep graph learning for graph neural networks: Better and robust node embeddings." NeurIPS 2020

Better Graph Structure 

Better Node Embeddings

GNN embeddings

𝐀34
5 = cos 𝐰5⊙𝐯3 , 𝐰5⊙𝐯4 , 𝐀34 = 𝑚'!+

5,!

6

𝑎34
5

𝐚34 = ?
𝐀34 , 𝐚34 < 𝜖
0, 𝐚34> 𝜖

Real-world Graph is sparse!

𝐀7 = 𝜆𝐋. + (1 − 𝜆)(𝜂𝑓 𝐀7 + 1 − 𝜂 𝑓(𝐀!))
𝐋. = 𝐃. '..%𝐀. 𝐃. '..%

𝑓 𝐀 34 = 𝐀34/+
𝒋
𝐀34Quadratic Computation 𝒪(𝑛$)

𝐫3-
5 = cos 𝐰5⊙𝐯3 , 𝐰5⊙𝐮- , 𝐫3- = 𝑚'!+

5,!

6

𝐫3-
5

Anchor Selection 𝒪 nK , K ≪ n

… … …
AnchorNode Node

Node -> Anchor𝐅.,; = 𝚲'!𝐑<𝐅.

𝐅! = 𝚲'!𝐑<𝐅.,; Anchor -> Node
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Q&A and Future Work – Topology Issue

Class Neighborhood Distribution Distinguishability 

High HighLow

Local Topology Issue

Global Topology Issue

Q

𝐒%

𝐒𝟐

A

𝐒! : The Simpson’s Theme was re-arranged
during season 2, and the current arrangement by Alf
Clausen was introduced at the beginning of season3

𝐒": Alf Heiberg Clausen (born March 28, 1941) is
an American film and television composer.

Q: In what year was the creator of the current
arrangement of the Simpson's Theme born?

A:March 28, 1941

Missing Topology Issue Topology Issue of Complex Graphs
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Imbalance Issues

• Node-level Imbalance

• Graph-level Imbalance

• Edge-level Imbalance

• Future Directions and Q&A
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Imbalance Issues – Node-level imbalance

3 1

2

4

6

6

SMOTE

Train – Major

Train – Minor

Test – Major

Test – Minor

Feature Interpolation

GraphSMOTE

𝑛𝑛 𝑣 = argmin5 𝐡5& − 𝐡,& , s. t. 𝐘5 = 𝐘,

𝐡,7
& = 1 − 𝛿 𝐡𝒗& + 𝛿𝐡EE ,

&

𝐀𝒗7𝒖 = [1, if 𝐄𝒗7𝒖 ≥ 𝜂
0, otherwise

ℒG)HG = 𝐄 − 𝐀 𝑭
𝟐

𝐄𝒗𝒖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜎(𝐡,&𝐒𝐡5&))

Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling technique." JAIR, 2002
Zhao, Tianxiang., et al. "Graphsmote: Imbalanced node classification on graphs with graph neural networks." WSDM, 2021

3

2

4

6

6

Graph-structured data has both feature and edge

Feature Interpolation

Edge Generation
1
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Imbalance Issues – Node-level imbalance

Neighborhood Memorization

𝑝 𝑢 𝑣K"4G) = m𝜙𝑝 𝑢 𝑣K"ELM + 1 − m𝜙 𝑝(𝑢|𝑣NOMHGN)

𝟎. 5 < m𝜙 =
1

1 + 𝑒+P
< 𝟏 𝜙 = 𝐾𝐿(𝜎(𝐨K"ELM)||𝜎(𝐨NOMHGN))

𝐨K"ELM = 𝒩𝒗 +&(
5∈𝒩𝒗

𝐨K"ELM

2 31

Replace

Seen Unseen

Neighbor stays the same

1 11

Replace

Seen Unseen

Center nodes stays the same

Park, Joonhyung et al. "GraphENS: Neighbor-aware ego network synthesis for class-imbalanced node classification." ICLR 2021
Ma, Yihong, et al. "Class-imbalanced learning on graphs: A survey." arXiv 2023
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Imbalance Issues – Graph-level imbalance

Quantity Augmentation

SPP - Structurally Similar Molecules tend 
to have similar properties

Structure Augmentation

𝐺$8 ∼ 𝑞 (⋅ |𝐺$)

𝐺%8 ∼ 𝑝 (⋅ |𝐺%)

Conditional	distribution	
by	node	masking

Conditional	distribution	
by	edge	removing

Graph-of-Graphs (GoG)

𝐺!

𝐺"

𝐺#

GoG

Constructed GoG demonstrates 
high homophily!

Drug Discovery

HTS Hit Ratio
0.05% to 0.5%

Malware Detection

0.01% Google, 2% Android, 

Normal               Autism
36           :           1

ASD Brain Classification

Autism Statistics. 2023

Wang, Yu, et al. "Imbalanced graph classification via graph-of-graph neural networks." CIKM 2022
Liu, Yunchao Lance, et al. "Interpretable chirality-aware GNN for structure activity relationship modeling in drug discovery." AAAI 2023
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Imbalance Issues – Graph-level imbalance

70 years, ~600 polymers, oxygen permeability , 
Polymer Gas Separation Membrane Database

Imbalance Graph 
Regression! 

Model
Train

Augment

Self-training

(1) Use Model to predict on unlabeled graphs and 
select those high-quality-one 

(2) Sample more for label interval with less training samples

(3) Anchor-based Mix-up

𝑎3 , 𝐳3: anchor-label 
and embedding
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Q&A and Future Work – Imbalance Issues

Node-level Imbalance

Graph-level Imbalance
ASD Brain

Graph-of-Graphs 
(GoG) 𝐺'

𝐺(

𝐺+

GoGNormal       Autism
36    :      1

HTS Hit Ratio
0.05% to 0.5%

Retrieval Additional Supervision

Content 
Retriever Text

Database 𝒟! Database 𝒟" Database 𝒟#

……

𝒟

AugmentQuery

…

…

Bag-of-Graphs

Replace

Generate Additional Supervision
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Bias and Fairness Issues - Suicide Prevention

• Why suicide prevention?
• Suicide is one of the leading causes of death in United States

• Existing prevention strategies disproportionately affect different groups

• Key question
• How to correct the bias and ensure fairness on graphs?

Gatekeeper training 
programs

Suicide attempts 
by race/ethnicity

Toy example of a gatekeeper
training program
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Bias and Fairness Issues - Fairness Definition

• Principle
• Lack of favoritism from one side or another

• Rich fairness definitions
• Group fairness

• Statistical parity
• Equal opportunity
• Equalized odds
• Accuracy parity
• …

• Individual fairness
• Counterfactual fairness
• Degree fairness (on graphs)

Lack of favoritism

One side

Fairness definition Two sides 

Group fairness Two demographic groups

Individual fairness Two data points

Counterfactual fairness A data point and its counterfactual version

Degree fairness Two group of nodes with same degree
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Bias and Fairness Issues

• Group Fairness on Graphs

• Individual Fairness on Graphs

• Degree Fairness on Graphs

• Future Directions and Q&A
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Group Fairness: Statistical Parity

• Statistical parity = equal acceptance rate
PrS #𝑦 = 𝑐 = PrT #𝑦 = 𝑐

• "𝑦: model prediction
• Pr$: probability for the protected group
• Pr%: probability for the unprotected group
• Also known as demographic parity, disparate impact

• Example: clinical trial participation

Node classification
algorithm

Approved Not Approved

: male        
: female Pr V𝑦 = approved = 2/3

Pr V𝑦 = approved = 2/3

Fair result
Same approval rate for 
male and female

Feldman, M., et al. Certifying and removing disparate impact. KDD 2015.
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Group Fairness: Equal Opportunity

• Equal opportunity = equal true positive rate
PrS #𝑦 = 𝑐|𝑦 = 𝑐 = PrT #𝑦 = 𝑐|𝑦 = 𝑐

• 𝑦: true label
• "𝑦: model prediction
• Pr$: probability for the protected group
• Pr%: probability for the unprotected group

• Example: clinical trial participation Approved Not Approved

: truth = approved : truth = not approved

: male : female

Fair result
Same true positive rate 
for male and female

Pr V𝑦 = approved| = 1
Pr V𝑦 = approved| = 1

If hold for all classes, it 
is called equalized odds

Node classification
algorithm

Hardt, M., et al. Equality of opportunity in supervised learning. NeurIPS 2016.
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Adversarial Learning for Fair Representation Learning

• Statistical parity
• Independence between the learned embedding 𝐳 and a sensitive attribute 𝑎

𝐳& ⊥ 𝑎&, ∀ node 𝑢
where 𝑎& is the sensitive value of node 𝑢

• Formulation
• Mutual information minimization

𝐼 𝐳&, 𝑎& = 0, ∀ node 𝑢
• Analogous to statistical parity in classification task
• Fail to predict 𝑎& using 𝐳& ß no information about 𝑎& in 𝐳&

• Solution
• Adversarial learning
• Encoder: encode node into low-dimensional embedding space for downstream tasks
• Discriminator: fail to predict 𝑎& using 𝐳&

Corresponding to 
‘adversarial’

Bose, A., & Hamilton, W. (2019). Compositional fairness constraints for graph embeddings. ICML 2019.
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Limitation #1: Full Access to Sensitive Attribute Information

• Adversarial learning
• Minimize a task-specific loss function to learn ‘good’ representations
• Maximize the error of predicting sensitive feature to learn ‘fair’ representations

• Limitations
• Require the sensitive attribute of all training nodes to train a good discriminator
• Ignore the fact that sensitive information is hard to obtain due to privacy

• Question
• What if we only have limited sensitive attribute information?

Dai, E. et al. Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information. WSDM 2021.
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FairGNN: Additional Supervision Signal

• Observation
• Adversarial learning is unstable to train ß even worse with limited sensitive attribute
• Failure to converge may also cause discrimination

• Key idea
• Additional prerequisite of independence for additional supervision
• Independence à zero covariance

• Solution
• Pseudo sensitive attribute from a sensitive attribute estimator

• Not embedding from encoder
• Offer pseudo-label for covariance minimization

• Absolute covariance minimizer to minimize absolute covariance between model prediction "𝑦 and pseudo 
sensitive attribute �̂�

ℒ' = cov �̂�, "𝑦 = 𝔼[ �̂� − 𝔼[�̂�] "𝑦 − 𝔼["𝑦] ]
• Absolute covariance to avoid minimizing negative covariance

Dai, E. et al. Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information. WSDM 2021.
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FairGNN: Overall Framework 

• Overall loss function
ℒ = ℒ] + ℒ^ − 𝛼ℒ_ + 𝛽ℒ`

• Intuition
• ℒ(: classification loss (e.g., cross entropy) for learning representative node representation 
• ℒ): sensitive attribute estimation loss for generating accurate pseudo sensitive attribute information
• ℒ*: adversarial loss for debiasing the learned node representation
• ℒ': covariance minimizer to stabilize the adversary training

Dai, E. et al. Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information. WSDM 2021.
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BeMap: Fair Topology View Generation

• Theoretical analysis
node embedding = fair embedding + bias residual

• Empirical evidence
• Predict node sensitive attribute using embeddings 

learned from GCN and MLP (no MP)  

Dimension 1

Di
m

en
sio

n 
2 !!

!"

"!

Dimension 1

Di
m

en
sio

n 
2 !!

!"

"!

Vanilla message 
passing

Space of the Bias Residual !("#$)Space of the Bias Residual !(")

: bias residual in majority group : bias residual in minority group
: centroids of the majority or minority group  : fair centroid in BeMap

• Motivation
• Message passing could be unfair

• Method: BeMap
• (In every training epoch) neighbor sampling for 

balanced neighborhood and MP on it
• Up to 80% bias reduction
• Comparable or even better classification accuracy
• More details in the paper

Lin, X., Kang, J., Cong, W., & Tong, H. Bemap: Balanced message passing for fair graph neural networks. LoG 2023.
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Bias and Fairness Issues

• Group Fairness on Graphs

• Individual Fairness on Graphs

• Degree Fairness on Graphs

• Future Directions and Q&A
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Individual Fairness

• Definition
• Similar individuals should have similar outcomes
• Rooted in Aristotle’s conception of justice as consistency

• Formulation: Lipschitz inequality (most common)
𝑑a 𝑀 𝑥 ,𝑀 𝑦 ≤ 𝐿𝑑b 𝑥, 𝑦

• 𝑀: a mapping from input to output
• 𝑑!: distance metric for output
• 𝑑": distance metric for input
• 𝐿: a constant scalar

Input Space Output Space

𝑥

𝑦

𝑀(𝑥)

𝑀(𝑦)

𝑀 ⋅

𝑀 ⋅

𝑑" 𝑥, 𝑦 𝑑! 𝑀 𝑥 ,𝑀 𝑦

Kang, J., He, J., Maciejewski, R., & Tong, H. Inform: Individual fairness on graph mining. KDD 2020.
Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. Fairness through awareness. ITCS 2012.
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InFoRM: Individual Fairness on GRaph Mining

• Research questions
RQ1. Measure: how to quantitatively measure individual bias?
RQ2. Algorithms: how to ensure individual fairness?
RQ3. Cost: what is the cost of individual fairness?

Kang, J., He, J., Maciejewski, R., & Tong, H. Inform: Individual fairness on graph mining. KDD 2020.
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InFoRM Measure: Quantifying Individual Bias

• Principle
• Similar nodes → similar mining results

• Mathematical formulation
𝐘 𝑖, : − 𝐘 𝑗, : g

b ≤
𝜖

𝐒 𝑖, 𝑗
∀𝑖, 𝑗 = 1,… , 𝑛

• If 𝐒 𝑖, 𝑗 is high, +
𝐒 -,/

is small → push 𝐘 𝑖, : and 𝐘 𝑗, : to be more similar

• Inequality should hold for every pairs of nodes 𝑖 and 𝑗à too restrictive

• Relaxed criteria

=
hia

j

=
kia

j

𝐘 𝑖, : − 𝐘 𝑗, : g
b𝐒 𝑖, 𝑗 ≤ 𝑚𝜖

2Tr 𝐘l𝐋𝐒𝐘 ≤ 𝛿
• 𝑚: number of edges in the graph 
• 𝛿 = 𝑚ϵ

(1) For any node pair 𝑖, 𝑗
𝐘 𝑖, : − 𝐘 𝑗, : Q

6𝐒 𝑖, 𝑗 ≤ 𝜖

(2) Sum it up for all node pairs

Overall individual bias of the graph

Similarity between node 𝑖 and node 𝑗

Kang, J., He, J., Maciejewski, R., & Tong, H. Inform: Individual fairness on graph mining. KDD 2020.
Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through awareness. ITCS 2012.
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Alternative Measure: Ranking-Based Individual Fairness

• Key challenge in InFoRM measure
• Lipschitz condition (used in InFoRM)

𝑑! 𝑀 𝑥 ,𝑀 𝑦 ≤ 𝐿𝑑" 𝑥, 𝑦
• Distance comparison fails to calibrate between different individuals

• Definition
• Given

• (1) the node similarity matrix 𝐒= of the input graph 𝐺
• (2) the similarity matrix 𝐒>𝐘 of the GNN output o𝐘

• I𝐘 is individually fair if, for each node 𝑖, it satisfies that 
ranking list derived by 𝐒0 𝑖, ∶ = ranking list derived by 𝐒1𝐘[𝑖, ∶]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Consistent

Kang, J., He, J., Maciejewski, R., & Tong, H. Inform: Individual fairness on graph mining. KDD 2020.
Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
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InFoRM Measure: Mitigating Individual Bias

• Graph mining workflow

• Debiasing methods
• Debiasing the input graph: min

𝐘
𝐽 = N𝐀 − 𝐀 3

" + 𝛼Tr 𝐘4𝐋𝐒𝐘

• Debiasing the mining model: min
𝐘

𝐽 = 𝑙(𝐀, 𝐘, 𝜃) + 𝛼Tr 𝐘4𝐋𝐒𝐘

• Debiasing the mining results: min
𝐘

𝐽 = 𝐘 − X𝐘 3
" + 𝛼Tr 𝐘4𝐋𝐒𝐘

s. t. 𝜕𝐘𝑙 N𝐀, 𝐘, 𝜃 = 0
Individual bias 

(InFoRM measure)

topology consistency

task-specific loss function

mining results consistency

Kang, J., He, J., Maciejewski, R., & Tong, H. Inform: Individual fairness on graph mining. KDD 2020.
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InFoRM Cost: Characterizing Individual Bias

• Main focus
• Debiasing the mining results (model-agnostic)

• Given
• A graph with 𝑛 nodes and adjacency matrix 𝐀
• A node-node similarity matrix 𝐒
• Vanilla mining results X𝐘
• Debiased mining results 𝐘∗ = 𝐈 + 𝛼𝐒 %!X𝐘

• If 𝐒 − 𝐀 g = ∆, we have
E𝐘 − 𝐘∗ g ≤ 2𝛼 𝑛 ∆ + 𝑟𝑎𝑛𝑘 𝐀 𝜎rst 𝐀 E𝐘 g

• Key factors
• The number of nodes 𝑛 (i.e., size of the input graph)
• The difference ∆ between 𝐀 and 𝐒
• The rank of 𝐀à could be small due to (approximate) low-rank structures in real-world graphs 
• The largest singular value of 𝐀à could be small if 𝐀 is normalized

Kang, J., He, J., Maciejewski, R., & Tong, H. Inform: Individual fairness on graph mining. KDD 2020.
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Bias and Fairness Issues

• Group Fairness on Graphs

• Individual Fairness on Graphs

• Degree Fairness on Graphs

• Future Directions and Q&A
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Degree Fairness: Definition and Motivation

• Definition
• Nodes of different degrees should have balanced utility on a graph mining task

• Example: online advertising
• (A small portion of) celebrities often enjoy high-quality model performance
• (A large portion of) grassroot users often suffer from bad model performance

Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. Rawlsgcn: Towards rawlsian difference principle on graph convolutional network. WWW 2022.
Subramonian, A., Kang, J., & Sun, Y. Theoretical and empirical insights into the origins of degree bias in graph neural networks. arXiv 2024.
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Degree Unfairness: Pitfall of Graph Neural Networks

• Given
• (1) 𝒢 = 𝐀, 𝐗
• (2) Any test node 𝑖 in 𝒢 with label 𝑐
• (3) A graph learning model 𝑀 which output (before softmax) 𝐙
• (4) Any wrong prediction 𝑐6 ≠ 𝑐

• Our results
• Misclassification rate

Pr Pr "𝑦 = 𝑐|𝑖,𝑀 > Pr "𝑦 = 𝑐′|𝑀, 𝑖 ≤
1

1 + 𝑅-,7R

where 𝑅-,7R =
𝔼 𝐙 -,7R %𝐙 -,7

S

:;< 𝐙 -,7R %𝐙 -,7
(reciprocal of measure of dispersion from economics)

• 𝑅-,7R is positively correlated with the degree of node 𝑖

• Conclusion
• high-degree nodes often have lower misclassification rate!

Subramonian, A., Kang, J., & Sun, Y. Theoretical and empirical insights into the origins of degree bias in graph neural networks. arXiv 2024.
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Causes #1: High-Degree Nodes with High Influence in Node Embeddings

• Given
• 𝒱=;>?=?@: a set of labeled nodes 𝒱=;>?=?@
• 𝐖 A : the weight of 𝐿-th layer in an 𝐿-layer GCN
• 𝑑-: degree of node 𝑖
• 𝐱-: input node feature of node 𝑖
• 𝐡-

A : output embeddings of node 𝑖 learned by the 𝐿-layer GCN

• Influence of node 𝒊 on GCN training

𝑆 𝑖 = =
u∈𝒱BCDEBEF

𝔼 𝜕𝐡h
w /𝜕𝐱u ∝ 𝑑h 𝐖 w =

u∈𝒱BCDEBEF

𝑑u

• Remark
• For two nodes 𝑖 and 𝑗, if 𝑑- > 𝑑/, then 𝑆 𝑖 > 𝑆 𝑗

→ Node with higher degree will have higher influence on GCN training

Tang, X., et. al. Investigating and mitigating degree-related biases in graph convolutional Networks. CIKM 2020
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Solution #1: Degree-Specific Graph Convolution

• Key idea
• Degree-specific weights to encode degree information

• Given
• 𝑑-: the degree of node 𝑖
• 𝐖BT

C : the degree-specific weight w.r.t. degree of node 𝑗

• Degree-specific graph convolution
𝐡-
C$! = 𝜎 p

/∈𝒩U∪ -

𝑎-/ 𝐖 C +𝐖BT
C 𝐡/

C

• DEMO-Net à𝐖BT
C is generated randomly

• SL-DSGCN à𝐖BT
C is generated using a recurrent neural network

Tang, X., et. al. Investigating and mitigating degree-related biases in graph convolutional Networks. CIKM 2020
Wu, J., He, J., & Xu, J. Net: Degree-specific graph neural networks for node and graph classification. KDD 2019.
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Causes #2: High-Degree Nodes with High Influence in Gradient

• Gradient of loss w.r.t. weight
𝜕𝐽

𝜕𝐖 x ==
hia

j

𝑑o𝐀 𝑖 𝕀h
yz{ ==

kia

j

𝑑o𝐀 𝑗 𝕀k
|z}

• I𝐀 = N𝐃%
V
S(𝐀 + 𝐈)N𝐃%

V
S à symmetric normalization kernel

• 𝕀-
GH= and 𝕀/

<HI à the directions for gradient descent
• 𝑑1𝐀 𝑖 and 𝑑1𝐀 𝑗 à the importance of the direction
• High degree à more focus on that direction

• Symmetric normalization 
• Normalize the largest eigenvalue but not degree
• High degree in A → high degree in I𝐀

Row sum in o𝐀 Column sum in o𝐀

Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. Rawlsgcn: Towards rawlsian difference principle on graph convolutional network. WWW 2022
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Solution #2: Graph Normalization

• Key idea
• Mitigate impacts of node degree by normalizing it to constant (i.e., 1)
• Normalize the graph to a doubly stochastic graph

• Sinkhorn-Knopp (SK) algorithm
• Iteratively normalize row and columns
• (Our result) SK always finds the unique doubly stochastic form of symmetric normalization kernel

• Fair gradient computation
𝜕𝐽

𝜕𝐖 x ~s�|
= 𝐇 xTa lV𝐀��l

𝜕𝐽
𝜕𝐄 x

• I𝐀KL à doubly-stochastic normalization of I𝐀

• RawlsGCN family
• RawlsGCN-Graph: during data pre-processing, compute I𝐀KL and treat it as the input of GCN
• RawlsGCN-Grad: during optimization (in-processing), treat I𝐀KL as a normalizer to equalize the importance 

of node influence

Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. Rawlsgcn: Towards rawlsian difference principle on graph convolutional network. WWW 2022.
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Bias and Fairness Issues

• Group Fairness on Graphs

• Individual Fairness on Graphs

• Degree Fairness on Graphs

• Future Directions and Q&A
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Future Direction #1: Fairness beyond Plain and Static Graphs

• Observation
• Real-world graphs are often dynamic and/or multi-sourced

• Research questions
• How to ensure fairness for multiple type of nodes/edges or multi-graphs?
• How to efficiently update the fair mining results at each timestamp?
• How to characterize the impact of graph dynamics and multiple sources over the bias measure?

Multi-sourced 
social networks

Dynamic graphs
over 3 timestamps 
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Preliminary Work: Dynamic Group Fairness in Recommender Systems

• Observation
• performance disparity is getting larger over 

time

• Method: FADE
- Model-agnostic
- Fine-tuning with newly observed data
- Periodically re-training to keep historical 

information
- Linear complexity w.r.t. # new data

• Theory
• Fine-tuning is better than re-training for 

fairness over time

• Results
- Fairness over time, small accuracy decrease

Yoo, H., Zeng, Z., Kang, J., Liu, Z., Zhou, D., Wang, F., ... & Tong, H. Ensuring user-side fairness in dynamic recommender systems. WWW 2024
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Future Direction #2: Fairness on Graphs à Fairness with Graphs

• Fairness on graphs
• Graph as data
• Nodes = entities
• Social networks à nodes = users
• Citation networks à nodes = papers
• Web graph à nodes = webpages

• Fairness with graphs
• Graph as context
• Nodes = models/datasets/modalities

• Example: supply chain

• How can we leverage demand + supply + model collectively for fair supply chain? 

1. Demand + supply for medical resources
2. Models to allocate medical resources
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Future Direction #3: Benchmark and Evaluation Metrics

• Observation
• No consensus on the experimental settings for fair graph learning
• Which data to compare? What sensitive attribute to consider?
• Which evaluation metrics for each type of fairness?

• Consequences
• Different settings for different research works
• Hardly fair comparison among fair graph learning methods
• Hardly deployable methods in real-world scenarios

• Call for community effort
• Evaluation benchmark for consistent experimental settings and fair comparison
• Collection of large-scale, realistic, but challenging dataset for evaluation
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Limited Labeled Data Issues

• Graph Data Augmentations

• Self-supervised Learning on Graphs
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Data Augmentation

Wikipedia: Techniques used to increase the amount of data by 
adding slightly modified copies of already existing data or newly 
created synthetic data from existing data. 

• Why data augmentation?
• It helps reduce overfitting when training a machine learning 

model.
• The acquisition of labeled graph data can be expensive.
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Data Augmentation

Wikipedia: Techniques used to increase the amount of data by 
adding slightly modified copies of already existing data or newly 
created synthetic data from existing data. 

Model
𝑓

Representations “Dogs”Overfitting
100,000 
images

Extra data
points ?

augment

𝑔
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Data Augmentation

Wikipedia: Techniques used to increase the amount of data by 
adding slightly modified copies of already existing data or newly 
created synthetic data from existing data. 

Image sources: 
https://www.kdnuggets.com/2018/05/data-augmentation-deep-learning-limited-data.html
https://amitness.com/2020/05/data-augmentation-for-nlp/
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Graph Data Augmentation

• Structure Augmentation
• Drop/add nodes/edges, etc.

• Feature Augmentation
• Mask off features, etc.

• Label Augmentation
• Label propagation, etc.



64

Graph Data Augmentation

• Rule-based augmentations
• Designed based on heuristic rules
• Usually efficient and scalable
• Simple and easy to implement
• Commonly used in self-supervised learning

• Learned augmentations
• Involve learning during augmentation
• Augmented data better fits GML models
• Better performances in supervised learning
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Rule-based Graph Data Augmentation Approaches

Zhao, et al. Graph Data Augmentation for Graph Machine Learning: A Survey. 2022.
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DropEdge

• Dropout on edges: randomly remove some edges at the beginning 
of every training epoch.

• Prevents overfitting and over-smoothing.

<latexit sha1_base64="qe7aXlrb3273egQtLfiGeBvUnbM="></latexit>

Ã = M�A

M 2 {0, 1}N⇥N s.t. Mi,j = Bernoulli(")

Yu, et al. DropEdge: Towards Deep Graph Convolutional Networks on Node Classification. ICLR 2020.
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Other Stochastic Masking/Dropping Methods

• Node Dropping
• Randomly removing part of the nodes.

• Feature Masking
• Randomly mask off node features.
• Random row-shuffling on node feature matrix     .

• Subgraph Masking
• Randomly mask off a connected subgraph.

<latexit sha1_base64="ZuW7bbh6CK64nBhFukLmolLaw4Y=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcRSEWWfaL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bJ54Ss6sMiBhrO1TSObq742MRsZMosBOzhKaZW8m/ud1Uwyv/UyoJEWu2OKjMJUEYzI7nwyE5gzlxBLKtLBZCRtRTRnakkq2BG/55FXSuqh6l9Xafa1Sv8nrKMIJnMI5eHAFdbiDBjSBgYJneIU3xzgvzrvzsRgtOPnOMfyB8/kDz4eRBQ==</latexit>

X

Feng, et al. Graph Random Neural Networks for Semi-supervised Learning on Graphs. NeurIPS 2020.
You, et al. Graph Contrastive Learning with Augmentations. NeurIPS 2020.
Thakoor, et al. Large-scale Representation Learning on Graphs via Bootstrapping. ICLR 2022.
Velickovic, et al. Deep Graph Infomax. ICLR 2019.
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Mixup

• Mixup: generates a weighted 
combination of random pairs 
from the training data.

• Manifold Mixup: interpolating 
hidden states. 

<latexit sha1_base64="OK8JQvs8PoD86b/BzB8XGFZa/SQ="></latexit>

x̃ = �xi + (1� �)xj ,
ỹ = �yi + (1� �)yj .

Zhang, et al. Mixup: Beyond Empirical Risk Minimization. ICLR 2018.
Verma, et al. Manifold Mixup: Better Representations by Interpolating Hidden States. ICML 2019.
Image source: https://medium.com/@wolframalphav1.0/easy-way-to-improve-image-classifier-performance-part-1-mixup-
augmentation-with-codes-33288db92de5
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G-Mixup

1. Graphon estimation:
2. Graphon Mixup:
3. Graph Generation:
4. Label Mixup:

Han, et al. G-Mixup: Graph Data Augmentation for Graph Classification. ICML 2022.



70

Learned Graph Data Augmentation Approaches

Zhao, et al. Graph Data Augmentation for Graph Machine Learning: A Survey. 2022.
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Limitations of Rule-based Approaches

Do not leverage task information and could hurt the 
downstream performance

F1 Score: 92.4 F1 Score: 91.0

Zhao et al. Data Augmentation for Graph Neural Networks. AAAI 2021
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Learned Graph Data Augmentation Approaches

• Graph Structure Learning
• Augment data with good graph structures

• Adversarial Training
• Augment data with adversarial examples

• Rationalization
• Augment data by changing graph environment

• Automated Augmentation
• Automatically combine different augmentations
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Graph Structure Learning

Graph Learning + Graph Convolution

Jiang et al. Semi-supervised Learning with Graph Learning-Convolutional Networks. CVPR 2019.
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GAug: Neural Edge Predictor

What are better graph structures?
• “Noisy” edges should be removed

• “Missing” edges should be added
Inter-class edges 

Intra-class edges 

𝑀 models node similarities

Zhao et al. Data Augmentation for Graph Neural Networks. AAAI 2021
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GAug: Interpolation and Sampling

Bernoulli sampling

Zhao et al. Data Augmentation for Graph Neural Networks. AAAI 2021
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Graph Self-supervised Learning

• Graph Self-Supervised Learning aims to learn generalizable 
node/edge/graph representations without using any human-
annotated labels
• Graph Generative Modeling 

ØLearn generalizable representations by reconstructing the node features 
or/and graph structure

Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020
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Graph Self-supervised Learning

• Graph Self-Supervised Learning aims to learn generalizable 
node/edge/graph representations without using any human-
annotated labels
• Graph Generative Modeling 

ØLearn generalizable representations by reconstructing the node features 
or/and graph structure

• Graph Contrastive Learning (GCL)
ØCreate different views from the

unlabeled input graph via 
data augmentation

Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020
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Graph Self-supervised Learning

• Graph Self-Supervised Learning aims to learn generalizable 
node/edge/graph representations without using any human-
annotated labels
• Graph Generative Modeling 

ØLearn generalizable representations by reconstructing the node features 
or/and graph structure

• Graph Contrastive Learning (GCL)
ØCreate different views from the

unlabeled input graph via 
data augmentation

ØMaximize the agreement between
representations of different augmented
views of the same instance

Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020
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Typical Unsupervised Graph Contrastive Learning

• Graph Data Augmentation
ØCreate different views of each instance (e.g., node, subgraph)
ØArbitrary graph data augmentation (e.g., edge dropping, feature masking)

• Encoding Backbone
ØEncode different augmented views
ØShallow GNNs (e.g., 2-layer GCN)

• Contrastive Loss
ØMaximize the agreement between

representations learned from different 
augmented views

ØInstance-level contrastive learning

Encoding Backbone

Graph Data Augmentation

Contrastive Loss

Graph Contrastive Learning

Input Graph

1

2

3
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Abnormal Graph Data Issues

• Missing Features

• Adversarially Attacked Data
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Missing Data

There are various solutions to deal with missing labels:
• Label propagation (LP)
• Self-supervised learning
• Unsupervised learning
• …

What if we have missing features?
• Feature propagation

Rossi, Emanuele, et al. "On the unreasonable effectiveness of feature propagation in learning on graphs with missing node features." LOG 2022
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Missing Data

What if we have missing features?
• Feature propagation

Rossi, Emanuele, et al. "On the unreasonable effectiveness of feature propagation in learning on graphs with missing node features." LOG 2022
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Missing Data

Comparison of Feature Propagation to Label Propagation

Across different levels of missing features, 
Feature Propagation achieves the best performance

Experiment Results

Rossi, Emanuele, et al. "On the unreasonable effectiveness of feature propagation in learning on graphs with missing node features." LOG 2022
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Missing Data

Beyond missing features on graphs, can we solve the general missing data problem?

Two ways of approaching missing data problems:

• Feature imputation: missing feature values 
are estimated based on observed values

• Label prediction: downstream labels are 
learned directly from incomplete data

Issues: • Existing methods fail to make full use of feature values from other observations

• Existing methods tend to make biased assumptions about the missing values by 
initializing them with special default values

You, Jiaxuan, et al. "Handling missing data with graph representation learning." NeurIPS 2020
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Missing Data

GRAPE: reformulate the tasks as graph tasks

You, Jiaxuan, et al. "Handling missing data with graph representation learning." NeurIPS 2020
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Missing Data

GRAPE yields 20% lower mean absolute error for feature imputation, 
and 10% lower MAE for label prediction

You, Jiaxuan, et al. "Handling missing data with graph representation learning." NeurIPS 2020
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Adversarial Attacked Data

Observation: Small perturbations of the graph structure and node features lead to 
misclassification of the target

Zügner, Daniel et al. "Adversarial attacks on neural networks for graph data." KDD 2018
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Adversarial Attacked Data

Can we leverage small data perturbations to improve performance?
Yes, adversarial training

Adversarial training is the process of crafting adversarial data points, and then injecting them into 
training data

Find the optimal perturbation sample to achieve maximum loss

Find the optimal model parameters to resist the attack of perturbation sample D: distribution
||․||p : 𝑙5-norm distance metric
𝜖: perturbation budget

Kong, Kezhi, et al. "Robust optimization as data augmentation for large-scale graphs." CVPR 2022
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Adversarial Attacked Data

Can we leverage small data perturbations to improve performance?
Yes, adversarial training

Node Classification

Kong, Kezhi, et al. "Robust optimization as data augmentation for large-scale graphs." CVPR 2022
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Adversarial Attacked Data

Can we leverage small data perturbations to improve robustness?
Yes, adversarial training
A use case: training an MLP on graphs

GNN

MLP

# Layers # Layers

# Nodes Fetched Inference Time (ms)

GraphSAGE GraphSAGE

MLP MLP

Reason: to avoid the computation-intensive message passing mechanism

Tian, Yijun, et al. "Learning MLPs on graphs: A unified view of effectiveness, robustness, and efficiency." ICLR 2022
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Adversarial Attacked Data

Can we leverage small data perturbations to improve robustness?
Yes, adversarial training
A use case: training an MLP on graphs

Node Position 
Features 

Node Content 
Features 

…

…

…

…

Graph

GNN Teacher

MLP 
Student

Soft Label
Distillation

Representational 
Similarity Distillation

The problem of training an MLP on graphs: 
sensitive to features

Tian, Yijun, et al. "Learning MLPs on graphs: A unified view of effectiveness, robustness, and efficiency." ICLR 2022
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Adversarial Attacked Data

Can we leverage small data perturbations to improve robustness?
Yes, adversarial training

Node Position 
Features 

Node Content 
Features 

…

…

…

…

Graph

GNN Teacher

MLP 
Student

Soft Label
Distillation

Representational 
Similarity Distillation

…

…

Adversarial Feature
Augmentation

A use case: training an MLP on graphs

The problem of training an MLP on graphs: 
sensitive to features

Overcome this problem with adversarial training

Tian, Yijun, et al. "Learning MLPs on graphs: A unified view of effectiveness, robustness, and efficiency." ICLR 2022
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Adversarial Attacked Data

Can we leverage small data perturbations to improve robustness?
Yes, adversarial training

Node Position 
Features 

Node Content 
Features 

…

…

…

…

Graph

GNN Teacher

MLP 
Student

Soft Label
Distillation

Representational 
Similarity Distillation

…

…

Adversarial Feature
Augmentation

A use case: training an MLP on graphs
NOSMOG is as robust as GNNs

Tian, Yijun, et al. "Learning MLPs on graphs: A unified view of effectiveness, robustness, and efficiency." ICLR 2022
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Summary
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Future Directions

Abnormal Graph Data Issue

Topology Issue

Imbalance Data Issue

Bias and Fairness Issue

Limited Labeled Data Issue

Existing Data Processing is very time-
consuming and labor extensive!
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Summary

Intelligent Data Processing Tool

Data

Data Processing Tool

Task

Better 
Data

Imbalance

Discrimination

Out-of-
distribution

Missing Feature

Limited 
Knowledge

Diagnosis
Search

Data Lake 3

……

Data Lake K

Data Lake 2

Data Lake 1

Retrieval

Data/Task Output

Diagnose

Data/Task/Issue Data 
Lake

Retrieval

Data/Task/Issue/Data Lake Data

Search


